BB 422				
OUTLINE: Introduction and review Transport	ANABOLISM I: Carbohydrates			
Glycolysis Other sugars Pasteur: Anaerobic vs Aerobic Fermentations Exam-1 material	Carbon Assimilation – Calvin Cycle Stage One – Rubisco Carboxylase			
Pyruvate Exam-2 material Krebs' Cycle Oxidative Phosphorylation Electron transport	Oxygenase Glycolate cycle Stage Two - making sugar			
Chemicsmotic theory: Phosphorylation Fat Catabolism Exam-3 material Mobilization Exam tigues (marthy adjaced)	Overview and regulation Calvin cycle connections to biosynthesis Know pathway			
Activation of fatty acids Transport; carnitine Oxidation: β-oxidation, 4 steps: Protein Catabalism	Carbohydrate Biosynthesis in Animals			
Amino-Acid Degradation Dealing with the nitrogen; Urea Cycle Dealing with the carbon; Seven Families Nucleic Acid & Nucleotide Degradation	Gluconeogenesis reversible steps irreversible steps – four			
PHOTOSYNTHESIS: Overview of Photosynthesis	energetics 2-steps to PEP in mitochondria: Pyr carboxylase-biotin & PEPCK FBPase G6Pase Glyconen Synthesis			
Key experiments: Light Reactions energy in a photon	UDP-Gic Glycogen synthase branching Pentose-Dosphate Pathway Eatty Acids			
pigments HOW Light absorbing complexes-"red-drop experiment"	oxidative-NADPH contrasts non-oxidative-Ribose 5-P location & transport Regulation of Carbohydrate Metabolism Synthesis			
Photosystems (PS) PSII - oxygen from water splitting PSI - NADPH	Regulation Regulation Pyruate/PEP Diversification F6P/FBP: Fru 2,6Pz elongation GIC/GIC6P: sequestration desaturation			
Proton Motive Force – ATP Overview of light reactions	Gene control Eicosanoids Anaplerotic reactions End of Exam-4 material			

ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Diversification of fatty acids

- a. Elongation/desaturation
- b. Eicosanoids (Prostaglandins and Thromboxane) End of Exam-4 material
- Assembly of fatty acids into triacylglycerol and phospholipids
- 5. Metabolism of isoprenes
 - a. Ketone bodies and Isoprene biosynthesis
 - b. Isoprene polymerization
 - i. Cholesterol
 - ii. Steroids & other molecules
 - iii. Regulation
 - iv. Role of cholesterol in human disease

ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Biosynthesis of fatty acids Biosynthesis of fatty acid degradation and synthesis Diversification of fatty acids Elongation/desaturation Eicosanoids (Prostaglandins and Thromboxane) End of Exam-4 material Assembly of fatty acids into triacylglycerol and phospholipids Metabolism of isoprenes

- a. Ketone bodies and Isoprene biosynthesis
- b. Isoprene polymerization
 - i. Cholesterol
 - ii. Steroids & other molecules
 - iii. Regulation
 - iv. Role of cholesterol in human disease

Fatty Acid Biosynthesis			
Omega 3		Linoleate 18-2(A9.12)	Animals can do <mark>, plants can do</mark>
0 1	-Linolenate 8:3($\Delta^{9,12,15}$)	Δ ¹⁵ Δ ⁶ γ-Linolenate 18:3(Δ ^{6,9,12})	Eicosanoids: Synthesis and Classes
	desat elong desat	ation (C6) ation uration(C5) Eicosatrienoate (EET)	 Linoleate (18:2(Δ^{9,12}) gets desaturated on both sides = <u>γ-linolenate</u> (18:3(Δ^{6,9,12}) & α-linolenate (18:3(Δ^{9,12,15}).
Eicosa (EPA;	pentaenoic 20:5(Δ ^{5.8,11,1}	acid 4.77)) hydroxylation Benchling	 Elongation to C20, and further desaturation of γ-linolenate (18:3(Δ^{6,9,12}) gives Arachidonate, 20:4(Δ^{5,8,11,14})
Docos	ahexaenoic 2.6(A ^{4,7,10,1}	acid (ARA) Series 2 TO Lipoxins	 Elongation to C20, and TWO further desaturation of a-linolenate (18:3(Δ^{9,12,15}) gives EPA, 20:5(Δ^{5,8,11,14,17}). More of the same gets DHA, 22:6(Δ^{4,7,10,13,16,19})
Resolving	hydroxylation	aresins	 These desaturations are all going closer to the carboxylate and can be accomplished by animals.
<u>Fro</u>	m the	ese Elcosanoids (20C P	olyunsaturated fatty acids (PUFAs)) DIOACTIVE PARACTINE
sigi	naling	molecules are made:	PG = Prostaglandins
Elcosanoid	Major Site(s) of Synthesis	Major Biological Activities	TX = Thromboxanes
PGD ₂	mastcells	inhibits platelet and leukocyte aggregation, decreases T-cell proliferation and lymphocyte migration and secretion of IL- 18ALPHA; and IL-2; induces vasodilation and production of cAMP	LT = Leukotrienes
PGE	kidney, spieen, heart	Increases vasodiation and cAMP production, enhancement of the effects of brack/kinin and histamine, induction of uterine contractions and of plantet aggregation; decreases T-cell proliferation and lymphocyte migration and secretion of IL- 18ALPHA, and IL-2	Created from the arachidonate or EPA, which are
PGF2a	kidney, spleen, heart	increases vasoconstriction, bronchoconstriction and smooth muscle contraction	incorporated into membranes phospholipids.
PGH	many sites	a short-lived precursor to thromboxanes $A_{\rm p}$ and $B_{\rm p}$ induction of platelet aggregation and vasoconstriction	 In response to stimuli (hormone, etc.), phospholipase A₂
PGI ₂	heart, vascular endothelial cells	inhibits platelet and leukocyte aggregation, decreases T-cell prolifetation and lymphocyte migration and secretion of IL- 1Α and IL-2; induces vasodilation and production of cAMP	 Is activated The unsaturated C-2 fatty acid is released
TXA ₂	platelets	induces platelet aggregation, vasoconstriction, lymphocyte proliferation and bronchoconstriction	
TXB ₂	platelets	induces vasoconstriction	

